Friday, February 12, 2021

Leor Weinberger and his viral hijacker therapy.


Discoveries

NOISE-DRIVEN FATE SELECTION

A VIRAL-ENCODED LATENCY PROGRAM IN HIV AND ITS EVOLUTIONARY BENEFIT

'NOISE MODULATOR' MOLECULES

NOVEL GENE CIRCUITS

TIPS (THERAPEUTIC INTERFERING PARTICLES)

 


ADAPTIVE TRANSMISSIBLE THERAPIES: A NEW CONCEPT FOR DISEASE CONTROL


Existing measures for infectious disease control face three ‘universal’ barriers:


(i)  Deployment (e.g. reaching the highest-risk, infectious ‘superspreaders’ who drive disease circulation)


(ii)  Pathogen persistence & behavioral barriers (e.g. adherence)


(iii)  Evolution (e.g. resistance and escape)


These barriers exist because pathogens are dynamic—they mutate and transmit—while existing therapies are static, neither mutating nor transmitting.  To surmount these barriers, we have proposed a radical shift in therapeutic paradigm toward developing adaptive, dynamic therapies (Metzger et al. 2011).  Building off data-driven epidemiological models, we show that engineered molecular parasites, designed to piggyback on HIV-1, could circumvent each barrier and dramatically lower HIV/AIDS in sub-Saharan Africa as compared to established interventions. 


Above: A representative model for how a small 'core groups' of high-risk 'superspreaders' (e.g. commercial sex workers and their clients) drove the HIV-1 epidemic in sub-Saharan Africa along the trans-Africa highway in the 1980s.  These hard-to-reach groups--often stigmatized and disenfranchised--disproportionately drive disease spread and can be described by the Pareto '80/20' rule - where 80% of new infections are driven by 20% of the population.


Above: Theoretical model of how Therapeutic Interfering Particles (TIPs) would act to reduce the burden of HIV on a population-wide scale. Small blue "pools" of infection represent a local reduction in HIV by the TIP, and are rapidly spread by a "superspreader population".

These molecular parasites essentially steal replication and packaging resources from HIV within infected cells thereby generating Therapeutic Interfering Particles (TIPs)[1] which deprive HIV of critical replication machinery thereby reducing viremia.  The fundamental departure from conventional therapies is that TIPs are under strong evolutionary selection to maintain parasitism with HIV and will thus co-evolve with HIV, establishing a co-evolutionary ‘arms race’ (Rouzine and Weinberger, 2013).


Like Oral Polio Vaccine, (OPV)—currently used for the W.H.O. worldwide polio-eradication effort—TIPs could also transmit between individuals, a recognized benefit for OPV.  TIP transmission would occur along HIV-transmission routes (via identical risk factors), thereby overcoming behavioral issues and automatically reaching high-risk populations to limit HIV transmission even in resource-poor settings. 


For review:  Notton et al. Current Opinion in Biotechnology 2014.


             HIV TIPs Executive Summary


Papers of note: Metzger, Lloyd-Smith, and Weinberger. PLoS Computational Biology 2011 (videos above) and Rouzine and Weinberger. Journal of Virology 2013 (Linked above).

http://jvi.asm.org/content/87/4/2081.long


A UNIVERSAL  TRANSMISSIBLE VACCINE IS COMING!

 Apparently I have to write my own post because advertising has infected so many science based blogs and articles that it is almost impossible to separated the facts from the hype.

I will make this blog as condensed and as brief as possible...

 The future will contain weakened forms of universal transmissible vaccines.

A vaccine that will act like a virus and will transmit from person to person in much the same way a virus does, but which will protect and not kill the host...aka...you!

The danger for this kind of vaccine is the fact that whatever parts of a virus it contains might mutate and regenerate back into a deadly form if transmitted over long periods of time....therefore...scientists are considering creating a temporary transmission period where a vaccine will transmit for only a short period of time before losing its ability to transmit.

The End.

The above words are based on facts and the vaccines should make an appearance within a few

years from this date. April 3, 2020.




Thursday, February 11, 2021

Prime Minister Trudeau is investing Millions in clean transportation.

Main Content

Nouveaux investissements dans le transport en commun pour bâtir des communautés fortes, lutter contre les changements climatiques et créer de nouveaux emplois à travers le Canada 

Les investissements dans les infrastructures de transport en commun permettent de réduire la durée des déplacements des familles et de créer de bons emplois pour la classe moyenne. De plus, ils favorisent la croissance de notre économie et la réduction de la pollution de l’air. Depuis 2015, le gouvernement du Canada a accordé plus de 13 milliards de dollars à 1 300 projets de transport en commun dans des communautés d’un bout à l’autre du pays. C’est le plus vaste investissement dans le transport en commun de l’histoire canadienne. En rebâtissant en mieux après la pandémie mondiale de COVID-19, nous continuerons de faire ces investissements judicieux pour soutenir les Canadiens.

Aujourd’hui, le premier ministre Justin Trudeau a annoncé l’octroi de 14,9 milliards de dollars dans des projets de transport en commun au cours des huit prochaines années. Ceci comprend un financement permanent de 3 milliards de dollars par année qui sera accordé aux communautés canadiennes à compter de 2026-2027. Cette initiative procure aux villes et aux communautés les fonds prévisibles destinés au transport en commun qui leur sont nécessaires pour planifier l’avenir. Elle s’inscrit dans notre plan visant à créer un million d’emplois, à lutter contre les changements climatiques et à rebâtir une économie plus durable et plus résiliente. Ces investissements permettront d’atteindre les objectifs suivants :

Les investissements dans les infrastructures de transport en commun permettront de bâtir des communautés solides à travers le pays et d’améliorer la qualité de vie de tous les Canadiens. Le gouvernement continuera d’investir dans les projets les plus susceptibles d’appuyer notre relance, de créer des emplois pour la classe moyenne, de stimuler la croissance économique et de nous aider à atteindre nos cibles climatiques. Ensemble, nous pouvons créer un Canada plus propre, plus compétitif et plus résilient pour les générations à venir.

Citations

« En investissant dans les infrastructures de transport en commun, nous soutenons de bons emplois pour la classe moyenne, améliorons les déplacements, luttons contre les changements climatiques et contribuons à rendre la vie des Canadiens plus facile et plus abordable. Nous continuerons à faire ce qu’il faut pour assurer la relance de notre économie après la COVID-19 et rebâtir un pays plus résilient pour tout le monde. »

« Alors que nous travaillons à rebâtir en mieux, le moment est venu d’effectuer des investissements ambitieux dans des services de transport en commun modernes et durables à travers le pays, afin de réduire la congestion, de contribuer à la création d'un million d'emplois et de soutenir des communautés plus propres et plus inclusives. Le financement permanent à long terme des services de transport en commun permettra de construire de nouvelles lignes de métro, des trains légers sur rail et des tramways, des autobus électriques et des pistes cyclables. Il contribuera également à améliorer les réseaux de transport en milieu rural. Les Canadiens pourront ainsi se déplacer plus rapidement et de façon plus propre et plus abordable. Enfin, ce financement nous aidera à atteindre la carboneutralité et à assurer un avenir plus durable à nos enfants. »

« Notre gouvernement est résolu à investir dans le transport en commun à travers les communautés du pays. Nous agissons en collaboration avec les administrations municipales et les gouvernements provinciaux et territoriaux afin d’aider les Canadiens à bâtir une économie solide et à créer un environnement propre. »

« Investir dans des modes de transport plus propres et plus abordables fait partie intégrante du plan climatique renforcé du Canada, lequel nous permettra de dépasser notre objectif pour 2030 et d’atteindre la carboneutralité d'ici 2050. Le secteur des transports est à l’origine d’un quart des émissions au Canada. Il faut y effectuer des investissements judicieux dans la lutte contre les changements climatiques, comme ceux que nous avons annoncés aujourd'hui, pour soutenir de bons emplois canadiens, une économie plus forte et une planète plus saine. »

Faits saillants

Produit connexe

Liens connexes

Tuesday, February 9, 2021

Removing the host factors.

Highlights

  • Genome-wide CRISPR screens for SARS-CoV-2, HCoV-229E, and HCoV-OC43 host factors
  • Screens correctly identified divergent entry factors for the three coronaviruses
  • Cholesterol and phosphatidylinositol pathways are shared host dependency factors
  • Pharmacological inhibition of host factors reduces coronavirus replication

Summary

The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.

Graphical Abstract

Keywords

Introduction

The Coronaviridae family includes seven known human pathogens for which there are no approved vaccines and only limited therapeutic options. The seasonally circulating human coronaviruses (HCoV) OC43, HKU1, 229E, and NL63 cause mild, common cold-like respiratory infections in humans (
). However, three highly pathogenic coronaviruses emerged in the last two decades, highlighting the pandemic potential of this viral family (
). Infection with severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and Middle East respiratory syndrome coronavirus (MERS-CoV) can lead to acute respiratory distress syndrome and death, with fatality rates between 10%–40% (
). SARS-CoV-2, though less deadly, is far more transmissible than SARS-CoV-1 and MERS-CoV and has been responsible for over 50 million cases and 1.2 million deaths globally as of November 2020 (
). Because of the severity of their impact on global health, it is critical to understand how SARS-CoV-2 and other coronaviruses hijack the host cell machinery during infection and apply this knowledge to develop new therapeutic strategies.
Coronaviruses are enveloped, positive-sense single-stranded RNA viruses with a genome length of approximately 30 kb. Upon receptor binding and membrane fusion, the viral RNA is released into the cytoplasm, where it is translated to produce viral proteins. Subsequently, the viral replication/transcription complexes form on double-membrane vesicles and generate genome copies. These are then packaged into new virions via a budding process, through which they acquire the viral envelope, and the resulting virions are released from infected cells (
). During these steps, specific cellular proteins are hijacked and play crucial roles in the viral life cycle. For example, the angiotensin-converting enzyme 2 (ACE2) is exploited as the viral entry receptor for NL63, SARS-CoV-1, and SARS-CoV-2 (
). Additionally, cellular proteases, such as TMPRSS2, cathepsin L, and furin, are important for the cleavage of the viral spike (S) protein of several coronaviruses thereby mediating efficient membrane fusion with host cells (
). Systematic studies have illuminated virus-host interactions during the later steps of the viral life cycle. For example, proteomics approaches revealed comprehensive interactomes between individual coronavirus proteins and cellular proteins (
). Additionally, biotin labeling identified candidate host factors based on their proximity to coronavirus replicase complexes (
). While these studies uncovered physical relationships between viral and cellular proteins, they do not provide immediate information about the importance of these host components for viral replication.
An orthogonal strategy is to screen for mutations that render host cells resistant to viral infection using CRISPR-based mutagenesis. These screens identify host factors that are functionally required for viral infection and could be targets for host-directed therapies (
). In this study, we have performed a genome-wide CRISPR knockout (KO) screen using SARS-CoV-2 (USA/WA-1 isolate) in human cells. Importantly, we expanded our functional genomics approach to distantly related Coronaviridae members in order to probe for commonalities and differences across the family. This strategy can reveal potential pan-coronavirus host factors and thus illuminate targets for antiviral therapy to combat the current and potential future outbreaks. We conducted comparative CRISPR screens for SARS-CoV-2 and two seasonally circulating common cold coronaviruses, OC43 and 229E. Our results corroborate previously implicated host pathways, uncover new aspects of virus-host interaction, and identify targets for host-directed antiviral treatment.

Results

 CRISPR KO Screens Identify Common and Virus-Specific Candidate Host Factors for Coronavirus Infection

Phenotypic selection of virus-resistant cells in a pooled CRISPR KO screen is based on survival and growth differences of mutant cells upon virus infection. We chose Huh7.5.1 hepatoma cells as they were uniquely susceptible to all tested coronaviruses. We readily observed drastic cytopathic effect during OC43 and 229E infection (Figure S1A). Huh7.5.1 also supported SARS-CoV-2 replication but exhibited limited virus-induced cell death (Figures S1B and S1C). To improve the selection conditions for the SARS-CoV-2 CRISPR screen, we overexpressed ACE2 and/or TMPRSS2, which are present at low levels in wild-type (WT) Huh7.5.1 cells (Figure S1D). This led to increased viral uptake of a SARS-CoV-2 S-pseudotyped lentivirus, confirming the important function of ACE2 and TMPRSS2 for SARS-CoV-2 entry (Figure S1E). We ultimately used Huh7.5.1 cells harboring a bicistronic ACE2-IRES-TMPRSS2 construct for the SARS-CoV-2 screen as these cells sustained efficient infection that led to widespread cell death while still allowing the survival of a small number of cells (Figures S1C and S1F). The generated CRISPR KO libraries in Huh7.5.1 and Huh7.5.1-ACE2-IRES-TMPRSS2 cells had virtually complete single-guide RNA (sgRNA) representation prior to the start of the virus challenge but, as expected, were depleted of cells containing sgRNAs against commonly essential fitness genes within 7 days post-library transduction (Figures S1G and S1H) (
).
Figure thumbnail figs1
Figure S1Optimization of Phenotypic Selection of Coronavirus-Infected Huh7.5.1 Cells and Quality Control Metrics for CRISPR Screens, Related to 
The three CRISPR screens—for resistance to SARS-CoV-2, 229E, and OC43—identified a compendium of critical host factors across the human genome (Figure 1A; Table S1). The overall performance of the screens was robust as indicated by the enrichment of multiple individual sgRNAs against the top 10 scoring genes from each screen (Figure S1I). Importantly, the known viral entry receptors ranked among the top hits: ACE2 for SARS-CoV-2 and aminopeptidase N (ANPEP) for 229E (Figures 1B and 1C) (
). OC43, unlike the other coronaviruses, does not have a known proteinaceous receptor but primarily depends on sialic acid or glycosaminoglycans for cell entry (
); consistent with this fact, multiple heparan sulfate biosynthetic genes (B3GALT6, B3GAT3, B4GALT7EXT1EXT2EXTL3FAM20BNDST1SLC35B2UGDHXYLT2) were identified in our OC43 screen (Figures 1D and S2A). Several of these genes were also markedly enriched in the SARS-CoV-2 screen (Figures 1B and S2A), which is consistent with a recent report that SARS-CoV-2 requires both ACE2 and cellular heparan sulfate for efficient infection (
). Overall, the identification of the expected entry factors validates the phenotypic selection of our host factor screens.
Figure thumbnail gr1
Figure 1Genome-wide Loss-of-Function Screens in Human Cells Identify Host Factors Important for Infection by SARS-CoV-2, 229E, and OC43

  Hello my good friend Valdemar Oliveira! I am happy to hear you had a successfull heart operation.  I hope you live to be 110. I may not be...