Thursday, March 13, 2014

Attention industrial polluters, after reading the following (IPCC) article can you guess what will happen to your children and grand children? Do you still want to continue pumping carbon monoxide and CO2 into the atmosphere? Do you still want to sell polluting cars on Television and on the Internet?
======================================================================

The Intergovernmental Panel on Climate Change (IPCC) estimates that sea levels will rise between 0.18 and 0.59 meters (0.59 to 1.9 feet) by 2099 as warming sea water expands, and mountain and polar glaciers melt. These sea level change predictions may be underestimates, however, because they do not account for any increases in the rate at which the world’s major ice sheets are melting. As temperatures rise, ice will melt more quickly. Satellite measurements reveal that the Greenland and West Antarctic ice sheets are shedding about 125 billion tons of ice per year—enough to raise sea levels by 0.35 millimeters (0.01 inches) per year. If the melting accelerates, the increase in sea level could be significantly higher impacting Ecosystems. More importantly, perhaps, global warming is already putting pressure on ecosystems, the plants and animals that co-exist in a particular climate zone, both on land and in the ocean. Warmer temperatures have already shifted the growing season in many parts of the globe. The growing season in parts of the Northern Hemisphere became two weeks longer in the second half of the 20th century. Spring is coming earlier in both hemispheres. This change in the growing season affects the broader ecosystem. Migrating animals have to start seeking food sources earlier. The shift in seasons may already be causing the lifecycles of pollinators, like bees, to be out of synch with flowering plants and trees. This mismatch can limit the ability of both pollinators and plants to survive and reproduce, which would reduce food availability throughout the food chain. See Buzzing About Climate Change to read more about how the lifecycle of bees is synched with flowering plants. Warmer temperatures also extend the growing season. This means that plants need more water to keep growing throughout the season or they will dry out, increasing the risk of failed crops and wildfires. Once the growing season ends, shorter, milder winters fail to kill dormant insects, increasing the risk of large, damaging infestations in subsequent seasons. In some ecosystems, maximum daily temperatures might climb beyond the tolerance of indigenous plant or animal. To survive the extreme temperatures, both marine and land-based plants and animals have started to migrate towards the poles. Those species, and in some cases, entire ecosystems, that cannot quickly migrate or adapt, face extinction. The IPCC estimates that 20-30 percent of plant and animal species will be at risk of extinction if temperatures climb more than 1.5° to 2.5°C. Impacting People The changes to weather and ecosystems will also affect people more directly. Hardest hit will be those living in low-lying coastal areas, and residents of poorer countries who do not have the resources to adapt to changes in temperature extremes and water resources. As tropical temperature zones expand, the reach of some infectious diseases, such as malaria, will change. More intense rains and hurricanes and rising sea levels will lead to more severe flooding and potential loss of property and life. Photograph of beach erosion in Massachusetts, 2007. One inevitable consequence of global warming is sea-level rise. In the face of higher sea levels and more intense storms, coastal communities face greater risk of rapid beach erosion from destructive storms like the intense nor’easter of April 2007 that caused this damage. (Photograph ©2007 metimbers2000.) Hotter summers and more frequent fires will lead to more cases of heat stroke and deaths, and to higher levels of near-surface ozone and smoke, which would cause more ‘code red’ air quality days. Intense droughts can lead to an increase in malnutrition. On a longer time scale, fresh water will become scarcer, especially during the summer, as mountain glaciers disappear, particularly in Asia and parts of North America. On the flip side, there could be “winners” in a few places. For example, as long as the rise in global average temperature stays below 3 degrees Celsius, some models predict that global food production could increase because of the longer growing season at mid- to high-latitudes, provided adequate water resources are available. The same small change in temperature, however, would reduce food production at lower latitudes, where many countries already face food shortages. On balance, most research suggests that the negative impacts of a changing climate far outweigh the positive impacts. Current civilization—agriculture and population distribution—has developed based on the current climate. The more the climate changes, and the more rapidly it changes, the greater the cost of adaptation. Ultimately, global warming will impact life on Earth in many ways, but the extent of the change is largely up to us. Scientists have shown that human emissions of greenhouse gases are pushing global temperatures up, and many aspects of climate are responding to the warming in the way that scientists predicted they would. This offers hope. Since people are causing global warming, people can mitigate global warming, if they act in time. Greenhouse gases are long-lived, so the planet will continue to warm and changes will continue to happen far into the future, but the degree to which global warming changes life on Earth depends on our decisions now. References Anthes, R.A., Corell, R.W., Holland, G., Hurrell, J.W., MacCracken, M.C., & Trenberth, K. (2010, February 12). Hurricanes and Global Warming—Potential Linkages and Consequences. Bulletin of the American Meteorological Society, 87: 623-628. Accessed April 15, 2010. Arctic Council. (2004). Arctic Climate Impact Assessment Report. Accessed March 22, 2007. Balachandran, N., Rind, D., Lonergan, P., & Shindell, D. (1999). Effects of solar cycle variability on the lower stratosphere and the troposphere. Journal of Geophysical Research, 104(D22), 27, 321-327, 339. Bender, M. A., Knutson, T. R., Tuleya, R. E., Sirutis, J. J., Vecchi, G. A., Garner, S. T., and Held, I. M. (2010). Modeled Impact of Anthropogenic Warming on the Frequency of Intense Atlantic Hurricanes. Science, 327(5964), 454-458. Bonan, G. B. (2008). Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science, 320(5882), 1444-1449. Cazenave, A. (2006). How fast are the ice sheets melting? Science, 314, 1251-1252. Clement, A.C., Burgman, R., Norris, J.R. (2009, July 24) Observational and model evidence for positive low-level cloud feedback. Science, 325 (5939), 460-464. Dessler, A., Zhang, Z., Yang, P. (2008, October 23). Water-vapor climate feedback inferred from climate fluctuations, 2003-2008. Geophysical Research Letters, 35, L20704. Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688. Foucal, P., Frölich, C., Spruit, H., and Wigley, T. (2006). Variations in solar luminosity and their effect on the Earth’s climate. Nature, 443, 161-166. Hansen, J., Sato, M., Ruedy, R., Kharecha, P., Lacis, A., Miller, R., Nazarenko, L., et al. (2007). Climate simulations for 1880–2003 with GISS model E. Climate Dynamics, 29(7), 661-696. Hansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Del Genio, A., Koch, D., Lacis, A., Lo, K., Menon, S., Novakov, T., Perlwitz, J., Russell, G., Schmidt, G.A., and Tausnev, N. (2005, June 3). Earth’s energy imbalance: confirmation and implications. Science, 308, 1431-1435. Intergovernmental Panel on Climate Change. (2007). Climate Change 2007: The Physical Science Basis Summary for Policymakers. A Report of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change. (2007). Climate Change 2007: Climate Change Impacts, Adaptation and Vulnerability Summary for Policymakers. A Report of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Joint Science Academies. (2005). Joint Science Academies’ Statement: Global Response to Climate Change. June 2005. Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., et al. (2007). Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science, 317(5839), 793-796. Labitzke, K., Butchart, N., Knight, J., Takahashi, M., Nakamoto, M., Nagashima, T., Haigh, J., et al. (2002). The global signal of the 11-year solar cycle in the stratosphere: observations and models. Journal of Atmospheric and Solar-Terrestrial Physics, 64(2), 203-210. Laštovička, J., Akmaev, R. A., Beig, G., Bremer, J., & Emmert, J. T. (2006). ATMOSPHERE: Global Change in the Upper Atmosphere. Science, 314(5803), 1253-1254. Lau, K. M., and H. T. Wu. (2007). Detecting trends in tropical rainfall characteristics, 1979-2003. International Journal of Climatology, 27. Lean, J. L., & Rind, D. H. (2009). How will Earth’s surface temperature change in future decades? Geophysical Research Letters, 36, L15708. Lean, J. L., & Rind, D. H. (2008). How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophysical Research Letters, 35(18). Luthcke, S.B., Zwally, H.J., Abdalati, W., Rowlands, D.D., Ray, R.D., Nerem, R.S., Lemoine, F.G., McCarthy, J.J., and Chinn, D.S. (2006). Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314, 1286-1289. Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S., & Ni, F. (2008). Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences, 105(36), 13252-13257. Manvendra K. Dubey, Petr Chylek, Charlie S. Zender, & Chris K. Folland. (2010, February 12). Global Warming and the Next Ice Age. Bulletin of the American Meteorological Society, 89 (12), 1905-1909. McGranahan, G., D. Balk and B. Anderson. (2007). The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environment & Urbanization, 19 (1), 17-37. Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC. Oren, R., Ellsworth, D. S., Johnsen, K. H., Phillips, N., Ewers, B. E., Maier, C., Schafer, K. V., et al. (2001). Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature, 411(6836), 469-472. Ramanathan, V., & Feng, Y. (2008). On avoiding dangerous anthropogenic interference with the climate system: Formidable challenges ahead. Proceedings of the National Academy of Sciences, 105(38), 14245-14250. Rind, D., Lean, J.L., Lerner, J., Lonergan, P., and Leboissetier, A. (2008). Exploring the stratospheric/tropospheric response to solar forcing. Journal of Geophysical Research, 113, D24103. Robock, A., Marquardt, A., Kravitz, B., & Stenchikov, G. (2009). Benefits, risks, and costs of stratospheric geoengineering. Geophysical Research Letters, 36, L19703. Sabine, C. L. (2004). The Oceanic Sink for Anthropogenic CO2. Science, 305(5682), 367-371. Schimel, D. (2007). Carbon cycle conundrums. Proceedings of the National Academy of Sciences, 104(47), 18353-18354. Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., Huang, H., et al. (2007). Model Projections of an Imminent Transition to a More Arid Climate in Southwestern North America. Science, 316(5828), 1181-1184. Shepherd, A., and Wingham, D. (2007). Recent sea-level contributions of the Antarctic and Greenland Ice Sheets. Science, 315, 1529-1532. Soden, B. J. and Held, I.M. (2006, July). An assessment of climate feedbacks in coupled ocean-atmosphere models. Journal of Climate, 19: 3354-3360. Stainforth, D. A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D. J., Kettleborough, J. A., et al. (2005). Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433(7024), 403-406. U.S. Climate Change Science Program. (April 2006). Temperature Trends in the Lower Atmosphere. Accessed April 13, 2007. U.S. Environmental Protection Agency. (2007). Climate Change. Accessed March 22, 2007. U.S. Geological Survey. (2009, December 29). Volcanic gases and their effects. Volcano Hazards Program. Accessed March 29, 2010. Velicogna, I., and Wahr, J., (2006). Measurements of time-variable gravity show mass loss in Antarctica. Science, 311 (5768), 1754-1756. Weir, J. (2002, April 8). Global Warming. Earth Observatory. Accessed April 13, 2007. Related Reading United States Global Change Research Program. Real Climate Introduction Global Warming How is Today’s Warming Different from the Past? Is Current Warming Natural? How Much More Will Earth Warm? How Will Global Warming Change Earth? References and Related Resources Print this entire article Share facebook twitter stumbleupon Google+ pinterest Subscribe Today

No comments:

Post a Comment

From Eric Barker...How to live a long and awesome life.

  Here’s how to live a long awesome life: Socialize :  Instead of staring into the soulless eyes of your smartphone, spend more time with fr...