Thursday, August 23, 2018

Visit Google + for magnificent pictures. 


Photo

A faster future? Will it be better?

Why the Future Is Arriving Faster Than You Think

0
447
People have no idea how fast the world is changing.
So said Peter Diamandis to the audience at Singularity University’s Global Summit, taking place this week in San Francisco. Diamandis believes the convergence of multiple technologies is transforming business models, and they’re never going back.
For starters, the way businesses are born (in someone’s garage, at a college dorm, on a computer or smartphone screen) and come to thrive (through digitization that leads to exponential growth), in the 21st century is radically different than the way they used to do so 100 or even 50 years ago.
Peter Diamandis Singularity University Global Summit 2018
Peter Diamandis at Singularity University’s Global Summit in San Francisco
But business models may be the least of it. Diamandis said, “Every single walk of life is going to change. Not in 20–30 years, but this decade.” He described the forces he believes are accelerating this rate of change.

Moore’s Law

Gordon Moore famously predicted, in 1965, that computer chips would double in processing power while halving in cost every 18-24 months thereafter.Moore’s Law turned out to be uncannily accurate, and as a result we’ve seen a massive increase in computing power at ever-decreasing costs. Diamandis asked the audience to consider what kind of computing device they could buy with $1,000 10 years ago as opposed to now—and to imagine how that difference will translate 10 years down the road, too.
Besides making computers more widely available to the average person, the speed/cost curve is pushing multiple related technologies forward more quickly. “As computational power gets faster,” Diamandis said, “so do networks and sensors, synthetic biology, robotics, 3D printing—and the convergence of these is what’s transforming business models.” Speed begets speed, at least when it comes to tech.

Time Abundance

Think about how you spend your time on a day-to-day basis. For a good chunk of it is, you’re likely  looking at a screen, be it a computer, phone, television, or other device. Another chunk is spent enjoying the company of friends or loved ones, another eating, and so on. These are all pretty standard activities.
But what most of us don’t consider is how dramatically the way humans spend our waking hours has changed over the centuries. “We used to have to forage for firewood, water, and food,” Diamandis said. “Tech begins to liberate us. It gives us a vacation from survival.” Stopping into your local grocery to grab ingredients for dinner takes so much less time than hunting or harvesting it. Buying ready-made food that’s already been heated or refrigerated for you takes even less time.
What we’re doing with all the extra time technology has given us is—you guessed it—inventing more technology. “The amount of time we have to innovate is massively increasing,” Diamandis said. Granted, we don’t always choose to use our extra time wisely—but Diamandis’ optimistic take is that the more time tech frees up for us, the better tech we’ll in turn be able to build.

Capital Abundance

A lot of extra time may not get you too far (innovation-wise, at least) if you don’t have any money. But the amount of money available to entrepreneurs has skyrocketed, largely thanks to the way that money is raised and the diversity of sources it comes from.
According to Diamandis, there’s more capital available now than there has been at any other time in human history. Crowdfunding has made it possible for someone in a remote part of the world to reach out to people in cities or other countries and get money to start a business. 2017 saw new records in venture investing in the US, Asia, and Europe. Initial coin offerings (ICOs) raise huge amounts of money in remarkably short amounts of time. State-ownedsovereign wealth funds as well as privately-held funds (most notably Softbank CEO Masayoshi Son’s $100 billion all-tech Vision Fund) are investing globally, often with a heavy focus on technology.
“The velocity of capital that’s flowing is unprecedented,” Diamandis said. “We’re seeing massive investments like never before, not keeping technology at the norm, but actually accelerating it.”

Demonetization

Thanks to digitization and automation, the cost of everything from computing to storage to launching a startup is massively demonetizing. The cost of sequencing a human genome is a perfect (and still shocking) example—sequencing the first human genome cost an estimated total of $2.7 billion; now astartup is aiming to do it for $100.
Diamandis himself started a space tourism company called BlastOff! in 1999. “Our cost for getting this company started—for servers, bandwidth, software, everything—was about five million dollars,” he said. Now the cost of starting a business in the US isestimated at $2,000 to $5,000.
Cheap credit means more people are willing to take the financial risk of starting a business, and the tools needed to make those businesses successful cost less, too. Phone calls between different countries used to cost dollars per minute—now there are multiple ways to make those calls for free. Connectivity is faster and cheaper than it’s ever been. Businesses can advertise for free or cheap on social media and other online platforms.
“Your dollar now goes ten times or a hundred times farther,” Diamandis said.

Communications Abundance

About half the world is currently connected to the internet. But what about the other half? According to Diamandis, 4.2 billion new minds will be coming online in the next 7 years, and they’re going to accelerate the future. “It’s no longer just Silicon Valley,” he said. “It’s the world. What are these people going to invent, create, and discover?”
Google, OneWeb, and SpaceX are all working to blanket the earth in high-speed internet, be it viaballoons in the stratosphere or satellite constellations in space.
China plans to deploy 5G by 2020, and some US telecom companies are starting deployment this year. Besides making your phone 100 times faster, 5G will enable functions like remote precision medicine, interconnected networks of driverless vehicles, virtual and augmented reality, and the sensors and actuators that make up the Internet of Things.
“The point is this,” Diamandis said. “In 2017 we had half the world connected—3.8 billion people. By 2022–2025, we’re going to see 8 billion people connected, and at a gigabit connection speed, with access to the world’s information.”

Increased Genius

In the past—and in many parts of the world, the present—people with great ideas who lived in small, remote villages often succumbed to their ingenuity being lost. “You could be the smartest person in the village, but you were stuck there,” Diamandis said. With no connectivity and no way to share knowledge with the larger world, there wasn’t another option. Increasingly as more of the world gets connected, people have the ability to make their ideas known everywhere on the planet.
And it’s not just people being connected, he added—their brains may soon be connected too. Companies like Kernel, Neuralink, OpenWater, and BrainGate—among others—are all working on brain-computer communications technology. Diamandis believes this tech will yield (and preserve) a million-fold more intelligence.
“Human intelligence is going to be the dominant driver in competitiveness in the century ahead,” he said.

Increased Longevity

It’s generally accepted in the US and elsewhere that once you reach an age somewhere between 60–70, it’s time to hang up your boots, sit back, and relax—for the rest of your life.
But, Diamandis argued, “I know a lot of 65- to 70-year-olds who are at the top of their game, and the last thing they want to do is retire. This is when they have the most contacts, the most knowledge, the most wisdom.”
Diamandis thinks we’ll soon make 100 the new 60, andlongevity is at the center of many companies’ radars, with life-extending tech in the works. Senolytic medicineis working to increase lifespan by selectively killing off aging cells. 3D printing is making slow but steady progress towards being able to print functioning human organs. CRISPR is being used to try to engineer away genetic diseases.
Longevity escape velocity is defined as the point at which, for every year you’re alive, you can extend your life by more than one year. “We’ll reach that 12 years from now,” Diamandis said. Whether or not the theoretical outcome—living forever—is actually desirable is another story.

What It All Means? Speed.

To sum it all up, what we’ve got is more people sharing more knowledge, at faster speeds and lower costs, than ever before. If speed has already begotten speed, then, it seems the most likely scenario is this phenomenon experiencing even more growth and acceleration going forward.
So how do we all take part in it? What if things changetoo fast for us to keep up?
Diamandis is an eternal optimist, and he believes these quicker speeds of change are bringing us an increase in resources to make that change positive.
As he put it, “The world is getting faster, and the power you have to change the world is getting greater.”
447
Vanessa is associate editor of Singularity Hub. She's interested in renewable energy, health and medicine, international development, and countless other topics. When she's not reading or writing you can usually find her outdoors, in water, or on a plane.

FOLLOW VA

Wednesday, August 22, 2018

A future without disease is possible! WOW!


Landmark FDA Approval Brings Powerful Gene Silencing Method to Market


1,759

265
Earlier this month, the FDA approved an entirely new family of drugs, one so powerful that it could put CRISPR-based gene therapy to shame. Backed by two decades of research and a Nobel Prize, these drugs have the ability to cure inherited diseases—and do so without actually needing to edit the delicate genome.
The green-lit therapy is patisiran, a drug ten years in the making by the Cambridge-based Alnylam for genetic nerve damage. But in this rare case, the nature of the drug is perhaps more significant: patisiran is based on a technology called RNA interference, or RNAi, which allows doctors to silence genes that aren’t properly functioning.
Patisiran is just the tip of the iceberg. In theory, RNAi has the potential to cure any disease caused by “bad” proteins, such as stroke, Alzheimer’s, high cholesterol, or other neurodegenerative disorders. The potential is so grand that scientists have long dubbed the technology a way to “drug the undruggable.”
“This approval is part of a broader wave of advances that allow us to treat disease by actually targeting the root cause, enabling us to arrest or reverse a condition, rather than only being able to slow its progression or treat its symptoms,” said FDA commissioner Scott Gottlieb in a press release. “New technologies like RNA inhibitors, that alter the genetic drivers of a disease, have the potential to transform medicine, so we can better confront and even cure debilitating illnesses.”
With other RNA-based therapies hurtling down the drug development pipeline, it’s likely we’ll be seeing more of these drugs soon. Here’s what you need to know.

What Is RNAi and Why Is It So Powerful?

You might remember from biology class that DNA works its magic by turning into proteins. This doesn’t happen directly. Rather, our genetic material relies on RNA to shuttle its information over to the necessary cellular factories that make proteins.
RNAi works by shooting the messenger: hijack, silence, or destroy the carrier, then the message gets erased. To scientists this is a particularly attractive way to treat inherited diseases.
A straightforward approach to dealing with bad genes is trying to replace a mutated gene with a healthy copy using gene therapy. This often involves cutting the genetic material and pasting new data into the new blank space. But the cut is not always specific, and there comes the risk: by tinkering with the code of life, we could inadvertently change other genes, destroying healthy ones or activating genes that could cause cancer.
By acting from a distance, RNAi avoids that risk. The mutated gene—and the genome itself—can be left alone. It doesn’t matter what the code is—if it can’t be compiled, then no running program. No RNA, no bad proteins, no disease.
This rule also applies to non-inherited diseases. During a stroke, for example, a slew of proteins come to life that together order brain cells to die. RNAi can shut down that process, and in turn save precious brain tissue.
There are more perks. RNAi is reversible. Biology is a complicated beast, and proteins that normally do good can, under certain disease situations, turn bad. The idea then isn’t to erase that protein entirely—which gene therapy does—but silence it temporarily. When the body goes back into a healthy state, scientists can then stop the treatment, allowing “black hat” proteins to return to their white hats and perform their normal tasks.

Why the Long Wait?

The simple answer? Delivery and safety.
RNAi was first discovered in 1998. Since then, scientists have rapidly adopted the technology to silence various genes (myself included) to suss out their functions. Making a strand of DNA-like material to interfere with RNA is the easy part. The problem is getting the precious therapy to the tissue in question without it getting chopped up.
Similar to DNA, RNA is made up of genetic letters, or nucleotides—A, C, G, and U in this case. RNAi works by adding a small snippet of synthetically-made nucleotides into the body, where it homes to the disease-causing RNA in question like a missile and destroys the target.
In practice, it’s a different story. The synthetic snippets, once inside the body, are almost instantly attacked by the body’s defense system. Scientists have tried wrapping the therapy in soap-like nanoparticles, but these tiny biological spaceships often end up stuck in the liver.
Getting RNAi treatments into the brain, or heart, or lungs, for example, is the major hurdle in pushing the technology to market.
Another downfall is this: synthetic RNA snippets sometimes resemble invading viruses and activate the immune system. Sometimes this can lead to crazy inflammation and—in rare cases—even death.
Back in the late 2000s, the combination of these two stumbling blocks caused major drug giants—Merck, Pfizer, Roche, and Novartis—to abandon the RNAi ship. The period was so bleak that Alnylam refers to it as the “dark ages.”

How Did Patisiran Succeed?

The new drug, patisiran, circumvents the delivery problem by targeting the liver. As Arrakis Therapeutics CEO Michael Gilman commented on Twitter, “What finally got RNAi to the finish line was not so much technical challenges as it was realizing, and then accepting, that where it really works is in the liver—the killer app.”
Patisiran will be delivered to patients through an infusion. Protected by nanoparticles, the therapy will grab onto RNA strands that lead to a rare disease called hereditary transthyretin-mediated amyloidosis (hATTR). The disease, among other symptoms, causes severe nerve damage in the body and affects roughly 50,000 people worldwide.
Although patisiran will be the first cure for the inherited disease, the FDA’s green light is somewhat limited. The drug is only approved for nerve damage, but not other symptoms of the disease, such as heart problems.

What Comes Next?

Alnylam is hoping to work with the FDA to further broaden patisiran’s uses. As of now, the drug has the six-figure list price of $450,000 a year. While sky-high, the price is in the range of new therapies such as CAR-T for blood cancers.
Nevertheless, the broader field of RNAi has a lot to look forward to. Alnylam itself has other RNAi-based candidate therapies that aim to treat high cholesterol, bleeding disorders, and Parkinson’s disease. (A quick search on Clinicaltrials.gov confirms the company’s role as the leading RNAi-developer.)
“Developing the first [RNA-based] drug rapidly advances the speed at which you can develop additional ones—that’s incredibly exciting,” saidAlnylam’s co-founder, Dr. Phillip Zamore.
How far the field can go remains a thorny question. Without tackling the problem of safety and delivery, RNAi-based therapies may be limited to the liver and kidneys and never realize their full potential.
But Alnylam’s success may once again spruce up the beleaguered field. Scientists are working on tagging the treatments with little Velcro-like proteins that help the therapeutic molecules grab onto various tissues. Alnylam may have a candidate that drags RNAi therapeutics into the brain. Speaking with STAT Plus, the company’s CEO hinted at announcing a third target tissue later this year.
RNAi may have more stumbling blocks. But with its historic win, it’s definitely time to put the powerful technology (back) on your map.
Image Credit: petarg / Shutterstock.com

265

Shelly Xuelai Fan is a neuroscientist at the University of California, San Francisco, where she studies ways to make old brains young again. In addition to research, she's also an avid science writer with an insatiable obsession with biotech, AI and all things neuro. She spends her spare time kayaking, bike camping and getting lost in the woods.

FOLLOW SHELLY:

   

  Hello my good friend Valdemar Oliveira! I am happy to hear you had a successfull heart operation.  I hope you live to be 110. I may not be...